VLSI 2020 Virtual Conference Program

On Demand Presentations

Short Courses

SC1 - Future of Scaling for Logic and Memory

SC1.1 - NanoSheet Transistor as a Replacement of FinFET for Future nodes: Device Advantages & Specific Process Elements
Nicolas Loubet, IBM, United States

SC1.2 - On-die Interconnect Challenges and Opportunities for Future Technology Nodes
Mauro Kobrinisky, Intel, United States

SC1.3 - Challenges and Prospects of Memory Scaling
Gwan-Hyeob Koh, Samsung Electronic, United States

SC1.4 - Ferroelectric Hafnium Oxide: From Memory to Emerging Applications
Uwe Schroeder, NaMLab gGmbH, Germany

SC1.5 - EUV Lithography and Its Application to Logic and Memory Devices
Anthony Yen, ASML, United States

SC1.6 - Emerging Technologies for TSV-free Monolithic 3DIC
Chang-Hong Shen, Taiwan Semiconductor Research Institute, Taiwan

SC1.7 - In situ BEOL transistors and oxide electronics
Suman Datta, University of Notre Dame, United States

SC1.8 - Layer transfer technology for heterogeneous material integration
Tatsuro Maeda, National Institute of Advanced Industrial Science and Technology (AIST), Japan

SC2 - System, Technology, and Design Solutions for Heterogeneous Integration

SC2.1 - Chiplet Meets the Real World: Benefits and Limits of Chiplet Designs
Samuel Naffziger, AMD, United States

SC2.2 - Heterogeneous System Partitioning and the 3D Interconnect Technology Landscape
Eric Beyne, imec, Belgium

SC2.3 - Back-End Based Chiplet Integration Solutions & Roadmap
C.Key Chung, SPIL Co. Ltd./Corp. R&D, Taiwan

SC2.4 - Heterogeneous integration for AI Architectures
Arvind Kumar & Mukta Farooq, IBM Research, United States

SC2.5 - Heterogeneous integration of chiplets for sensors
Marco Del Sarto, ST Microelectronics, Italy

SC2.6 - Chiplet-to-Chiplet Communication Circuits for 2.5D/3D Integration Technologies
Kenny Cheng-Hsiang Hsieh, Taiwan Semiconductor manufacturing Company, Taiwan

SC2.7 - Performance-Driven Design Methodology and Tools for 2.5D/3D Multi-Die Integration
Rajesh Gupta, Synopsys, Inc., United States

SC2.8 - Generic Design Strategies and Considerations for 2.5D and 3D Stacked IC Designs
Ki Chul Chun, Samsung Electronics, Republic of Korea

SC3 - Trends and Advancements in Circuit Design

SC3.1 - Topologies and Design Techniques of Switched-Capacitor Converters
Wing-Hung Ki, Hong Kong University of Science and Technology, Hong Kong

SC3.2 - The noise-shaping SAR ADC technique: The best of both worlds
Michael Flynn, University of Michigan, United States

SC3.3 - Next Generation Resistor-Based Sensors
Kofi Makinwa, Delft University of Technology, Netherlands

SC3.4 - Time reference and frequency generation
Jae-Yoon Sim, POSTECH, Republic of Korea

SC3.5 - Low-power and digitally-intensive RF transceiver design for IoT applications
Yao-Hong Liu, IMEC Netherlands, Netherlands

SC3.6 - Advances and trends in high-speed serial links for high-density IO applications
Mounir Meghelli, IBM, United States

SC3.7 - Adaptive Circuit & System Design Techniques
Thomas Burd, Advanced Micro Devices, United States

SC3.8 - Trends and Design Considerations for Emerging Memories and In-Memory Computing
Yih Wang, TSMC, United States

Luncheon Talk

Do You Really Know What Is In Your Computer? Perspectives on Verifiable Supply Chains
Andrew "bunnie" Huang

"Friday" Forum

FF.1 - Opening, Overview & Introduction
Ali Keshavarzi, Stanford University, United States

FF.2 - Intelligent Edge – It’s not just technology, it’s about responsible Society
GOWRI CHINDALORE, NXP Semiconductors, Inc., United States

FF.3 - Heterogeneous Integration Technology Trends at the Edge
Chih Hang Tung, TSMC, Taiwan

FF.4 - Self Powered SOCs for the Intelligent Edge
Benton Calhoun, University of Virginia, United States

FF.5 - CMOS and beyond CMOS Technologies for Edge Intelligence
Myung Hee Na, imec, Belgium

FF.6 - Low Power Wide Area (LPWA) Wireless Networks
Thomas Wattenye, Analog Devices, United States

FF.7 - Smart Vision Sensor
Hayato Wakabayashi, Sony Semiconductor Solutions Corporation, Japan

FF.8 - Efficient Machine Learning at the Edge
David Blaauw, University of Michigan, United States

FF.9 - Security in Edge Devices
Hannes Tschofenig, Arm, United States
Joint Focus Sessions

JFS1 - Silicon Photonics

 - Daisuke Okamoto, PETRA, Japan
 - Chen Sun, Ayar Labs, Inc., United States

- JFS1.2 (Invited) - High-Temperature Operation of Chip-Scale Silicon-Photonic Transceiver
 - Jonathan Proesel, IBM T. J. Watson Research Center, United States

- JFS1.3 - A Monolithically Integrated Silicon Photonics 8×8 Switch in 90nm SOI CMOS
 - Dongjae Shin, Samsung Advanced Institute of Technology, Republic of Korea

- JFS1.4 - III/V-on-built-Si technology for commercially viable photonics-integrated VLSI
 - Minjae Shin, Samsung Advanced Institute of Technology, Republic of Korea

- JFS1.5 - O-band GeSi quantum-confined Stark effect electro-absorption modulator integrated in a 220nm silicon photonics platform
 - Perret Clement, imec, Belgium

JFS2 - 5G/mm-Wave

- JFS2.1 (Invited) - Hardware-Software Co-integration for Configurable 5G mmWave Systems
 - Alberto Valdes-Garcia, IBM, United States

- JFS2.2 (Invited) - Beyond 5G & Technologies : A Cross-domain Vision
 - Eric Mercier, University Grenoble Alps, CEA, Leti, France

- JFS2.3 - A Comprehensive Reliability Characterization of 5G SoC Mobile Platform featuring 7nm EUV Process Technology
 - Minjung Jin, Samsung Electronics, Republic of Korea

- JFS2.4 - Enabling UTBB Strained SOI Platform for Co-integration of Logic and RF: Implant-Induced Strain Relaxation and Comb-like Device Architecture
 - Chen Sun, National University of Singapore, Singapore

- JFS2.5 - FinFET with Contact over Active-Gate for 5G Ultra-Wideband Applications
 - Ali Razavieh, Globalfoundries, United States

- JFS2.6 - An RF Transceiver with Full Digital Interface Supporting 5G New Radio FR1 with 3.84Gbps DL/1.92Gbps UL and Dual-Band GNSS in 14nm FinFET CMOS
 - Sangwook Han, Samsung Electronics, Republic of Korea

- JFS2.7 - A 1.96 Gb/s Massive MU-MIMO Detector for Next-Generation Cellular Systems
 - Chen-Chien Kao, National Taiwan University, Taiwan

JFS3 - STCO/DTCO

- JFS3.1 (Invited) - Heterogeneous System-Level Package Integration – Trends and Challenges
 - Frank Lee, TSMC, Taiwan

- JFS3.2 (Invited) - Can We Ever Get to a 100 nm Tall Library? Power Rail Design for 1nm Technology Node
 - Victor Moroz, Synopsys, Inc., United States

- JFS3.3 - Buried powered SRAM DTCO and system-level benchmarking in Nodal
 - SHARFE SALAHUDDIN, imec, Belgium

JFS4 - Devices and Circuits for AI/ML

- JFS4.1 - SOT-MRAM based Analog in-Memory Computing for DNN Inference
 - Jonas Doeverspeck, KU Leuven, Belgium

- JFS4.2 - Compact Probabilistic Poisson Neuron based on Back-Hopping Oscillation in STT-MRAM for All-Spin Deep Spiking Neural Network
 - Ming-Hung Wu, National Chiao Tung University, Taiwan

- JFS4.3 - An All-Weights-on-chip 22nm ULL Featuring 24×1 Mb eMRAM
 - Zhehong Wang, University of Michigan, United States

- JFS4.4 - PNPU: A 146.52 TOPS/W Deep-Neural-Network Learning Processor with Stochastic Coarse-Fine Pruning and Adaptive Input/Output/Weight Skipping
 - Sangyeob Kim, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea

- JFS4.5 - A Mixed-signal Time-Domain Generative Adversarial Network Accelerator with Efficient Subthreshold Time Multiplier and Mixed-signal On-chip Training for Low Power Edge Devices
 - Zhengyu Chen, Northwestern University, United States

JFS5 - Heterogeneous Integration

- JFS5.1 - Heterogeneous Integration of BEOL Logic and Memory in a Commercial Foundry: Multi-Tier Complementary Carbon Nanotube Logic and Resistive RAM at a 130 nm node
 - Tathagata Srimani, MIT, United States

- JFS5.2 - A 1.8 Gb/s/16Tb NAND Flash Memory Multi-chip Package with F-chip of Toggle 4.0 Specification for High performance and High capacity Storage Systems
 - Daeho Na, Flash Design Team, Samsung Electronics, Republic of Korea

- JFS5.3 - A Reconfigurable High-Bandwidth CMOS-MEMS Capacitive Accelerometer Array with High-g Measurement Capability and Low Bias Instability
 - Xiaoliang Li, Carnegie Mellon University, United States

- JFS5.4 - 3D-Stacked Cortex-M0 SoC with 20.3Gbps/mm2 7.1mW/mm2 Simultaneous Wireless Inter-Tier Data and Power Transfer
 - Benjamin Fletcher, University of Southampton, United Kingdom

- JFS5.5 - Heterogeneous Power Delivery for 7nm High-Performance Chiplet-Based Processors Using Integrated Passive Device and In-Package Voltage Regulator
 - Alan Roth, Taiwan Semiconductor manufacturing Company, United States

Circuits

CA1 - Machine Learning

- **CA1.1** - A 3.0 TFLOPS 0.62V Scalable Processor Core for High Compute Utilization AI Training and Inference
 - Sae Kyu Lee, IBM T. J. Watson Research Center, United States

- **CA1.2** - A 617 TOPS/W All Digital Binary Neural Network Accelerator in 10nm FinFET CMOS
 - Phil Knag, Intel Corporation, United States

 - Chieh-Fang Teng, National Taiwan University, Taiwan

- **CA1.4** - A 4.45 ms Low-latency 3D Point-cloud-based Neural Network Processor for Hand Pose Estimation in Immersive Wearable Devices
 - Dongseok Im, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea

- **CA1.5** - A 3mm2 Programmable Bayesian Inference Accelerator for Unsupervised Machine Perception using Parallel Gibbs Sampling in 16nm
 - Glenn G. Ko, Harvard University, United States
CA2 - Visual Processing & AI

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA2.1 - A 170μW Image Signal Processor Enabling Hierarchical Image Recognition for Intelligence at the Edge</td>
<td>Hyochan An, University of Michigan, USA</td>
</tr>
<tr>
<td>CA2.2 - A 0.05μJ/Pixel 70fps FHD 1Meps Event-Driven Visual Data Processing Unit</td>
<td>Somnath Paul, Intel Corporation, United States</td>
</tr>
<tr>
<td>CA2.3 - A 65nm Image Processing SoC Supporting Multiple DNN Models and Real-Time Computation-Communication Trade-off via Actor-Critical Neuro-Controller</td>
<td>Ningyuan Cao, Georgia Institute of Technology, United States</td>
</tr>
<tr>
<td>CA2.4 - A Ray-Casting Accelerator in 10nm CMOS for Efficient 3D Scene Reconstruction in Edge Robotics and Augmented Reality Applications</td>
<td>Steven Hsu, Intel Corporation, United States</td>
</tr>
<tr>
<td>CA2.5 - A 1200x1200 8-Edges/Vertex FPGA-based Motion-Planning Accelerator for Dual-Arm Robot Manipulation Systems</td>
<td>Takashi Oshima, Hitachi Ltd., Japan</td>
</tr>
</tbody>
</table>

CA3 - Image Sensor & Imaging Techniques

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA3.1 (Invited) - Managing Chip Design Complexity in the Post-Moore's Law Era</td>
<td>Yunsup Lee, SiFive, United States</td>
</tr>
<tr>
<td>CA3.2 - 17.3 GCUPS Pruning-based Pair-Hidden-Markov-Model Accelerator for Next-Generation DNA Sequencing</td>
<td>Xiao Wu, University of Michigan, Sequa Inc, United States</td>
</tr>
<tr>
<td>CA3.3 - A Probabilistic Self-annealing Compute Fabric based on 560 Hexagonally Coupled Ring Oscillators for Solving Combinatorial Optimization Problems</td>
<td>Ibrahim Ahmed, University of Minnesota, United States</td>
</tr>
<tr>
<td>CA3.4 - MANA: A Monolithic Adiabatic Integration Architecture Microprocessor Using 1.42J/op Superconductor Josephson Junction Devices</td>
<td>Christopher Ayala, Yokohama National University, Japan</td>
</tr>
<tr>
<td>CA3.5 - 32 GHz 6.5 mW Gate-Level-Pipelined 4-bit Processor using Superconductor Single-Flux Quantum Logic</td>
<td>Koki Ishida, Kyushu University, Japan</td>
</tr>
</tbody>
</table>

CB1 - Biomedical Sensors

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB1.1 - A 785mW Multimodal (V/I/R) Sensor Interface IC for Ozone Pollutant Sensing and Correlated Cardiovascular Disease Monitoring</td>
<td>Peng Wang, University of Virginia, United States</td>
</tr>
<tr>
<td>CB1.2 - An Artificial Iris ASIC with High Voltage Liquid Crystal Driver, 10 nA Light Range Detector and 40 nA Blink Detector for LCD flicker removal</td>
<td>Bogdan Raducanu, imec, Belgium</td>
</tr>
<tr>
<td>CB1.3 - A Packaged Ingestible Bio-pill with 15-pixel Multiplexed Fluorescence Nucleic-acid Sensor and Bi-directional Wireless Interface for In-vivo Bio-molecular Sensing</td>
<td>Chengjie Zhu, Princeton University, United States</td>
</tr>
<tr>
<td>CB1.4 - 1024-Electrode Hybrid Voltage/Current-Clamp Neural Interface System-on-Chip with Dynamic Incremental-SAR Acquisition</td>
<td>Jun Wang, UCSD, United States</td>
</tr>
<tr>
<td>CB1.5 (Invited) - High-Density and Large-Scale MEA System Featuring 236,880 Electrodes at 11.72 μm Pitch for Neuronal Network Analysis</td>
<td>Yuri Kato, Sony Semiconductor Solutions Corporation, Japan</td>
</tr>
</tbody>
</table>

CB2 - Image Sensor & Imaging Techniques

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB2.1 (Invited) - A 2D-SPAD Array and Read-Out AFE for Next-Generation Solid-State LiDAR</td>
<td>Tuan Thanh Ta, Toshiba Corp., Japan</td>
</tr>
<tr>
<td>CB2.2 - A 36-channel SPAD-integrated scanning LiDAR sensor with multi-event histogramming TDC and embedded interference filter</td>
<td>Hyeongseok Seo, Sungkyunkwan University, Republic of Korea</td>
</tr>
<tr>
<td>CB2.3 - A 3.0μW/65ps CVGVA self-controlled wake-up imager with on-chip motion detection, auto-exposure and object recognition</td>
<td>Arnaud Verdant, CEA-LETI-MINATEC, France</td>
</tr>
<tr>
<td>CB2.4 - A Low Noise Read-out IC with Gate Driver for Full Front Display Area Optical Fingerprint Sensors</td>
<td>Yongil Kwon, Samsung electronics, Republic of Korea</td>
</tr>
<tr>
<td>CB2.5 - An Always-On 4x Compressive VGA CMOS Image with 51μj/pixel and >32dB PSNR</td>
<td>Wenda Zhao, The University of Texas at Austin, United States</td>
</tr>
</tbody>
</table>

CB3 - Physical Sensors

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB3.1 - A 50.7dB-DR Finger-Resistance Extractable Multi-Touch Sensor IC Achieving Finger-Classification Accuracy of 97.7% on 6.7-inch Capacitive Touch Screen Panel</td>
<td>Tae-Gyun Song, KAIST, Republic of Korea</td>
</tr>
<tr>
<td>CB3.2 - A Pressure Sensing System with ±0.75mmHg (3σ) Inaccuracy for Battery-Powered Low Power IoT applications</td>
<td>Seok Hyeon Jeong, University of Michigan, United States</td>
</tr>
<tr>
<td>CB3.3 - A 200μW Eddy Current Displacement Sensor with 6.7nm RMS Resolution</td>
<td>Matheus Pimenta, Cypress Semiconductor, Ireland</td>
</tr>
<tr>
<td>CB3.4 - A 0.72 nW, 1 Sample/s Fully Integrated pH Sensor with 65.8 LSB/pH Sensitivity</td>
<td>Yihan Zhang, Columbia University, United States</td>
</tr>
<tr>
<td>CB3.5 - An 8-Element Frequency-Selective Acoustic Beamformer and Bitstream Feature Extractor with 60 Mel-Frequency Energy Features Enabling 95% Speech Recognition Accuracy</td>
<td>Seungjong Lee, University of Michigan, United States</td>
</tr>
</tbody>
</table>

CB4 - Front-Ends for Sensor Interfaces

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB4.1 - A -105dB THD 88dB-SNDR VCO-based Sensor Front-end Enabled by Background-Calibrated Differential Pulse Code Modulation</td>
<td>Jiannan Huang, University of California San Diego, United States</td>
</tr>
<tr>
<td>CB4.2 - A 4.3fJ/conversion-step 6440μm² all-dynamic capacitance-to-digital converter with energy-efficient charge reuse</td>
<td>Haoming Xin, Eindhoven University of Technology, Netherlands</td>
</tr>
<tr>
<td>CB4.3 - A 0.5V, 62μJ, 0.059mm² Sinusoidal Current Generator IC with 0.098% THD for Bio-impedance Sensing</td>
<td>Kwantaee Kim, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea</td>
</tr>
<tr>
<td>CB4.4 - A Portable NMR System with 50-KHz IF, 10-us Dead Time, and Frequency Tracking</td>
<td>Sungjin Hong, The University of Texas at Austin, United States</td>
</tr>
</tbody>
</table>

CC1 - Circuits for Security and Safety

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1.1 - A Performance-Flexible Energy-Optimized Automotive-Grade Cortex-R4F SoC through combined AVS/ABB/Bias-in-Memory-Array Closed-Loop Regulation in 28nm FD-SOI</td>
<td>Ricardo Gomez Gomez, ST Microelectronics, France</td>
</tr>
<tr>
<td>CC1.2 - A SCA-Resistant AES Engine in 14nm CMOS with Time/Frequency-Domain Leakage Suppression using Non-linear Digital LDO Cascaded with Arithmetic Countermeasures</td>
<td>Raghavan Kumar, Intel, United States</td>
</tr>
<tr>
<td>CC1.3 - A 0.26% BER, 10°28 Challenge-Response Machine-Learning Resistant Strong-PUF in 14nm CMOS Featuring Stability-Aware Adversarial Challenge Selection</td>
<td>Vikram Suresh, Intel Corporation, United States</td>
</tr>
<tr>
<td>CC1.4 - A 435MHz, 2.5Mbps/W Side-Channel-Attack Resilient Crypto-Processor for Secure RSA- Raghavan Kumar, Intel, United States</td>
<td>4K Public-Key Encryption in 14nm CMOS</td>
</tr>
</tbody>
</table>
CF1 - Advanced PLLs

- **CF1.1** - A 1MS/s to 1GS/s Ring-Based Pipelined ADC with Fully Dynamic Reference Regulation and Stochastic Scope-on-Chip Background Monitoring in 16nm
 - Vijay Kiran Kalyanam, Qualcomm Technologies, Inc., Austin, United States
 - Khoondker Ahmed, Intel Corporation, United States

- **CF1.2** - A 10-bit 100-MS/s SAR ADC with Always-on Reference Ripple Cancellation
 - Longyang Lin, National University of Singapore, Singapore

- **CF1.3** - An 8b 1GS/s 2.55mW SAR-Flash ADC with Complementary Dynamic Amplifiers
 - Dong-Ryeol Oh, KAIST, Republic of Korea

- **CF1.4** - A 177mW 10GS/s NRZ DAC with Switching-Glitch Compensation Achieving > 64dBc SFDR and < -77dBc IM3
 - Hung-Yi Huang, National Cheng Kung University, Taiwan

- **CF1.5** - A Compact 14 GS/s 8-bit Switched-Capacitor DAC in 16 nm FinFET CMOS
 - Pietro Caragiulo, Stanford University, United States

CF2 - RF & mm-Wave Circuits

- **CF2.1** - A 29% PAE 1.5bit-DSM-Based Polar Transmitter with Spur-Mitigated Injection-Locked
 - Yuncheng Zhang, Tokyo Institute of Technology, Japan

- **CF2.2** - A 5MHz-BW, 86.1dB-SNR 4X Time-Interleaved second-order ΔΣ Modulator with Digital Feedforward Extrapolation in 28nm CMOS
 - Dongyang Jiang, AMSV and IME/FST-EC, University of Macau, Macao

- **CF2.3** - A 10.4mW 50MHz-BW 800dB-DR Single-Opamp Third-Order CTSDM with SAB-ELD-Merged Integrator and 3-Stage Opamp
 - Kai Xing, State-Key Laboratory of Analog and Mixed Signal VLSI, IME and DECE/FST, University of Macau, China

- **CF2.4** - A 1 GS/s Reconfigurable BW 2nd-Order Noise-Shaping Hybrid Voltage-Time Two-Step ADC Achieving 170.9 dB FoMs
 - Yifan Lyu, MICAS-KU Leuven, Belgium

- **CF2.5** - A SAR ADC with Reduced kT/C Noise by Decoupling Noise PSD and BW
 - Zhe Li, Zhejiang University, University of Texas at Austin, China

CD1 - High-Speed Data Converters

- **CD1.1** - A 440μW, 109.8dB DR, 105.5dB SNDR Discrete-Time Zoom ADC with a 20kHz BW
 - Efrain Eland, Delft University of Technology, Netherlands

- **CD1.2** - A 5MHz-BW, 86.1dB-SNR 4X Time-Interleaved second-order ΔΣ Modulator with Digital Feedforward Extrapolation in 28nm CMOS
 - Dongyang Jiang, AMSV and IME/FST-EC, University of Macau, Macao

- **CD1.3** - A 480MHz 0.73psrms-Integrated Jitter PVT-Insensitive Fractional-N Sub-Sampling Ring PLL with a Jitter-Tracking DLL-Assisted DTC
 - Jaejong Hong, Samsung Electronics, Republic of Korea

- **CD1.4** - A 3.3GHz 101fms Jitter, -250.3dB FOM Fractional-N DPLL with Phase Error Detection Accomplished in Fully Differential Voltage Domain
 - Lianbo Wu, ETH, Switzerland

- **CD1.5** - A 3.2-to-3.8GHz Calibration-Free Harmonic-Mixer-Based Dual-Feedback Fractional-N PLL Achieving -66dBc Worst-Case In-Band Fractional Spur
 - Masaru Osada, The University of Tokyo, Japan

CD2 - Data Converter Techniques

- **CD2.1** - Embedded PLL Phase Noise Measurement Based on a PFD/CP MASH 1-1-1 ΔΣ Time-to-Mao-Hsuan Chou, Taiwan Semiconductor manufacturing Company, Taiwan
 - Digital Converter in 7nm CMOS

- **CD2.2** - A Fast Locking 5.8 - 7.2 GHz Fractional-N Synthesizer with Sub-2 us Settling Time in 22 nm FD-SOI
 - Jeffrey Prinzie, KU Leuven, Belgium

- **CD2.3** - A 280/140 GHz Push-Push Double Feedback Oscillators with 5.0/-3.9 dBm Output Power
 - Dzuhri Radityo Utomo, KAIST, Republic of Korea

- **CD2.4** - A 247 and 272 GHz Two-Stage Regenerative Amplifiers in 65 nm CMOS with 18 and 15 dB Gain Based on Double-Gmax Gain Boosting Technique
 - Dae-Woong Park, imec, Korea

- **CD2.5** - A 315-GHz Self-Synchronizing Minimum Shift Keying Receiver in 65-nm CMOS
 - Hung-Yi Huang, National Cheng Kung University, Taiwan

CF3 - IoT and Wireless Receivers

- **CF3.1** - A 17MOPS-36GOPS Adaptive Versatile IoT Node with 15,000x Peak-to-Idle Power Reduction, 207ns Wake-up Time and 1.3TOPS/W ML Efficiency
 - Ivan MIRO-PANADES, University Grenoble Alpes, CEA, LIST, France

- **CF3.2** - A 87.7pJ/cycle 89mW 64-QAM OFDM Receiver Using a Nonlinearity-aware Dual Phase-Locked Loop and DSM-controlled Frequency-Locked Loops
 - Giorgio Cristiano, ETH Zurich, Switzerland

- **CF3.3** - A 2.5V 560kHz 18.8dB/Cycle Ultra-Low Energy Oscillator in 65nm CMOS with 96.1ppm/°C Stability Using a Duty-Cycled Digital Frequency-Locked Loop
 - Daniel Truesdell, University of Virginia, United States

- **CF3.4** - A 0.9pJ/cycle 89mW 64-QAM OFDM Receiver Using a Nonlinearity-aware Dual Phase-Locked Loop and DSM-controlled Frequency-Locked Loops
 - Yifan Lyu, MICAS-KU Leuven, Belgium

CF4 - Low Power Oscillators

- **CF4.1** - A 8.7pJ/cycle, 694mW, One-Point Calibrated RC Oscillator Using a Nonlinearity-aware Dual Phase-Locked Loop and DSM-controlled Frequency-Locked Loops
 - Meng Ding, IMEC Netherlands, Netherlands

- **CF4.2** - A 570kHz 18.8dB/Cycle Ultra-Low Energy Oscillator in 65nm CMOS with 96.1ppm/°C Stability Using a Duty-Cycled Digital Frequency-Locked Loop
 - Jeffrey Prinzie, KU Leuven, Belgium

- **CF4.3** - A 0.9pJ/cycle 89mW 64-QAM OFDM Receiver Using a Nonlinearity-aware Dual Phase-Locked Loop and DSM-controlled Frequency-Locked Loops
 - Yifan Lyu, MICAS-KU Leuven, Belgium
CM1 - Advanced SRAM Design
CM1.1 - A 10nm SRAM Design using Gate-Modulated Self-Collapse Write Assist Enabling 175mV VMIN Reduction with Negligible Power Overhead
Zheng Guo, Intel Corporation, United States
CM1.2 - A 29.2 Mb/mm2 ultra high density SRAM macro using 7nm FinFET technology with dual-edge driven wordline/bitline and write/read-assist circuit
Yoshisato Yokoyama, Renesas Electronics, Japan
CM1.3 - Low Swing and Column Multiplexed Bitline Techniques for Low-Vmin, Noise-Tolerant, High-Density, 1R1W 6T-bitcell SRAM in 10nm FinFET CMOS
Jaydeep Kulkarni, Intel Corporation, United States
CM1.4 - 2x-Bandwidth Burst 6T-SRAM for Memory Bandwidth Limited Workloads
Charles Augustine, Intel Corporation, United States
CM1.5 - A 7nm Fin-FET 4.04-Mb/mm2 TCAM with Improved Electromigration Reliability using Far-Masko Yabuuchi, Renesas Electronics, Japan
Side Driving Scheme and Self-Adjust Reference Match-Line Amplifier

CM2 - Emerging Memory Design
CM2.1 - A 14.7Mb/mm2 28nm FDSOI STT-MRAM with Current Starved Read Path, 520/Sigma Offset Voltage Sense Amplifier and Fully Trimmable CTAT Reference
El Mehdi Boujamaa, Arm, France
CM2.2 - Dual-Port Field-Free SOT-MRAM Achieving 90-MHz Read and 60-MHz Write Operations under 55-nm CMOS Technology and 1.2-V Supply Voltage
Masanori Natsui, Tohoku University, Japan
CM2.3 - A 28nm 1.5Mb Embedded 1T2R RRAM with 14.8 Mb/mm2 Using Sneaking Current Suppression and Compensation Techniques
Jingang Yang, Institute of Microelectronics of the Chinese Academy of Sciences, China
CM2.4 - A 22nm 96KX144 RRAM macro with a self-tracking reference and a low ripple charge pump to achieve a configurable read window and a wide operating voltage range
Chung-Cheng Chou, Taiwan Semiconductor manufacturing Company, Taiwan

CM3 - Energy Efficient Memory Design
CM3.1 - A 28nm 10Mb Embedded Flash Memory for IoT Product with Ultra-Low Power Near-1V Supply Voltage and High Temperature for Grade 1 Operation
Hoyoung Shin, Samsung Electronics, Korea, Republic of
CM3.2 - A 65nm 16kb SRAM with 131.5pW Leakage at 0.9V for Wireless IoT Sensor Nodes
Shourya Gupta, University of Virginia, United States
CM3.3 - 1.03pW/bit Ultra-low Leakage Voltage-Stacked SRAM for Intelligent Edge Processors
Jingcheng Wang, University of Michigan, United States
CM3.4 - Z-PIM: An Energy-Efficient Sparcity-Aware Processing-In-Memory Architecture with Fully-Connected Dynamic Weight Precision
Korean Advanced Institute of Science and Technology (KAIST), Korea, Republic of

CP1 - Amplifiers
CP1.1 - A ~107.8 dB THD+N Low-EMI Multi-Level Class-D Audio Amplifier
Huajun Zhang, Delft University of Technology, Netherlands
CP1.2 - An 80, 1.4W, 0.0024% THD+N Class-D Audio Amplifier with Bridge-Tied Load Half-Side Switching Mode Achieving Low Standby Quiescent Current of 660µA
Ji-Hun Lee, KAIST, Korea, Republic of
CP1.3 - Sample and Average Common-Mode Feedback in a 101 nW Acoustic Amplifier
Rohit Rothe, University of Michigan, United States
CP1.4 - A 0.0046mm2 6.7µW Three-Stage Amplifier Capable of Driving 0.5-to-1.9nF Capacitive Load with <0.68MHz GBW without Compensation Zero
Hongseok Shin, Korea Advanced Institute of Science and Technology (KAIST), Korea, Republic of

CP2 - Voltage References and Wireless Power
CP2.1 - A Single-Tim Switched Capacitor CMOS Bandgap Reference with a 20% Inaccuracy of ±0.02%, ±0.12% for Battery Monitoring Applications
Jun-Ho Bo, Sogang University, Korea, Republic of
CP2.2 - A 0.25-V, 5.3-pW Voltage Reference with 25-µV/oC Temperature Coefficient, 140-µµV/V Line Sensitivity and 2,200-µµ2 Area in 180nm
Luigi Fassio, University of Calabria, Italy
CP2.3 - A 6.79 MHz Wireless Power Transfer System Enabling Perpendicular Wireless Powering with Efficiency Increase from 0.02% to 48.2% by Adaptive Magnetic Field Adder IC Integrating
Hao Qiu, The University of Tokyo, Japan
CP2.4 - A 120-330V, sub-µA, 4-Channel Driver for Microrobotic Actuators with Wireless-Optical Power Delivery and over 99% Current Efficiency
Jan Rentmeister, Dartmouth College, United States

CP3 - Power Converters
CP3.1 - An Automotive-Use Battery-to-Load GaN-Based Power Converter with Anti-Aliasing Multi-Rate Spread-Spectrum Modulation and In-Cycle ZVS Switching
Dong Yan, The University of Texas at Dallas, United States
CP3.2 - Model Predictive Control of an Integrated Buck Converter for Digital SoC Domains in 65nm CMOS
Xun Sun, University of Washington, United States
CP3.3 - An N-Path Switched-Capacitor Rectifier for Piezoelectric Energy Harvesting Achieving 13.9x Power Extraction Improvement
Loai Salem, University of California Santa Barbara, United States
CP3.4 - A 4V-0.55V Input Fully Integrated Switched-Capacitor Converter Enabling Dynamic Voltage Domain Stacking and Achieving 80.1% Average Efficiency
Tim Thielemans, MICAS-KU Leuven, Belgium
CP3.5 - A Dual-Rail Hybrid Analog/Digital LDO with Dynamic Current Steering for Tunable High PSRR & High Efficiency
Xiaosen Liu, Intel Corporation, United States
CP3.6 - A Domino Bootstrapping 12V GaN Driver for Driving an On-chip 650V eGaN Power Switch for 96% High Efficiency
Hisuan-Yu Chen, ECE, National Chiao Tung University, Taiwan

CW1 - Ultra-High-Speed Wireline
CW1.1 - A 4x112 Gb/s ADC-DSP Based Multistandard Receiver in 7nm FinFET
Masum Hossain, University of Alberta, Canada
CW1.2 - A 25-50Gb/s 2.22pJ/b NRZ RX with Dual-Bank and 3-tap Speculative DFE for Microprocessor Application in 7nm FinFET CMOS
Yang You, IBM, United States
CW1.3 - A 4-to-18GHz Active Poly Phase Filter Quadrature Clock Generator with Phase Error Correction in 5nm CMOS
WEICHH CHEN, Taiwan Semiconductor manufacturing Company, Taiwan

CW2 - Wireline Techniques
CW2.1 - A 28-Gb/s/pin PAM-4 Single-Ended Transmitter with High-Linearity and Impedance-Matched Driver and 3-Point ZQ calibration for Memory Interfaces
Yong-Un Jeong, Seoul National University, Korea, Republic of
CW2.2 - A 0.1-µm/32b 28-Gb/s Maximum-Eye Tracking, Weight-Adjusting MM CDR and Adaptive DFE with Single Shared Error Sampler
Moon-Chul Choi, Seoul National University, Korea, Republic of
CW2.3 - Open-Source Synthesizable Analog Blocks for High-Speed Link Designs: 20-GS/s 5b ENOB Analog-to-Digital Converter and 5-GHz Phase Interpolator
Sung-Jin Kim, Stanford University, United States
CW2.4 - A 28Wm 32Gb/s pin 16-QAM Single-Ended Transceiver for High-Speed Memory Interface
Jieqiong Du, UCLA ECE Dept., United States
Technology

THL - Highlight Session

THL.1 - Improved Air Spacer Co-Integrated with Self-Aligned Contact (SAC) and Contact Over Active Gate (COAG) for Highly Scaled CMOS Technology
Kangguo Cheng, IBM, United States

THL.2 - Buried Power Rail Integration with Si FinFETs for CMOS Scaling beyond the 5 nm Node
Anshul Gupta, imec, Belgium

TC1 - Advanced Si CMOS Devices

TC1.1 - Enabling Multiple-Vt Device Scaling for CMOS Technology beyond 7nm Node
Vincent S. Chang, TSMC, Taiwan

TC1.2 - 7-Levels-Stacked Nanosheet GAA Transistors for High Performance Computing
Sylvain BARRAUD, CEA-LETI-MINATEC, France

TC1.3 - Cold CMOS as a Power-Performance-Reliability Booster for Advanced FinFETs
H. L. Chiang, TSMC, Taiwan

TC1.4 - All-operation-regime characterization and modeling of drain current variability in junctionless and inversion-mode FDSOI transistors
Bosch Daphnée, CEA-LETI-MINATEC, France

TC2 - Ge and SiGe Devices

TC2.1 - Surface Ga-boosted Boron-doped Si0.5Ge0.5 using In-situ CVD Epitaxy: Achieving 1.1 x 10^21 cm^-3 Active Doping Concentration and 5.7x 10^-10 Q-cm2 Contact Resistivity
Haiwen Xu, National University of Singapore, Singapore

TC2.2 - First Demonstration of 4-Stacked Ge0.915Sn0.085 Wide Nanosheets by Highly Selective Isotropic Dry Etching with High S/D Doping and Undoped Channels
Yu-Shiang Huang, National Taiwan University, Taiwan

TC2.3 - Record Low Contact Resistivity to Ge:B (8.1x10^-10Ω-cm2) and GeSn:B (4.1x10^-10Ω-cm2) with Optimized [B] and [Sn] by In-situ CVD Doping
JaeWhan Kim, KAIST, Korea, Republic of

TC2.4 - Vertical heterojunction Ge0.92Sn0.08/Ge GAA Nanowire pMOSFETs: low SS of 67 mV/dec, small DIBL of 24 mV/V and highest gm. of 1200 µS/µm
Fang-Liang Lu, National Taiwan University, Taiwan

TC2.5 - Structural and Electrical Demonstration of SiGe Cladded Channel for PMOS Stacked Nanosheet Gate-All-Around Devices
Shogo Mochizuki, IBM Research, United States

TC3 - Advanced Processing

TC3.1 - Materials Technology Co-optimization of Self-Aligned Gate Contact for Advanced CMOS Technology Nodes
Ashish Pal, Applied Materials, United States

TC3.2 - Selective Enablement of Dual Dipoles for Near Bandedge Multi-Vt Solution in High Performance FinFET and Nanosheet Technologies
Ruqiang Bao, IBM Research, United States

TC3.3 - Composite Interconnects for High-Performance Computing Beyond the 7nm Node
Suketu Parikh, Applied Materials, Inc., United States

TC3.4 - Record Low Contact Resistivity to Ge:B (8.1x10^-10Ω-cm2) and GeSn:B (4.1x10^-10Ω-cm2) with Optimized [B] and [Sn] by In-situ CVD Doping
JaeWhan Kim, KAIST, Korea, Republic of

TC3.5 - High Quality N+/P Junction of Ge Substrate Prepared by initiated CVD Doping Process
Yu-Shiang Huang, National Taiwan University, Taiwan

TC3.6 - Ultralow pc Extraction for Recessed and Non-Recessed Contacts: Generalized Transmission Line Model
Ying Wu, National University of Singapore, Singapore

TF1 - FeFETs

TF1.1 - FeFET Memory Featuring Large Memory Window and Robust Endurance of Long-Pulse Cycling by Interface Engineering Using High-k AION
Chi-Yu Chan, National Tsing Hua University, Taiwan

TF1.2 - Re-examination of Vth Window and Reliability in HfO2 FeFET Based on the Direct Extraction of Spontaneous Polarization and Trap Charge during Memory Operation
Reika Ichihara, Kioxia Corporation, Japan

TF1.3 - Hot Electrons as the Dominant Source of Degradation for Sub-5nm HfO2 FeFETs
Fang-Liang Lu, National Taiwan University, Taiwan

TF1.4 - A Comprehensive Model for Ferroelectric FET Capturing the Key Behaviors: Scalability, Variation, Stochasticity, and Accumulation
Kai Ni, Rochester Institute of Technology, United States

TF1.5 - Asymmetric Polarization Response of Electrodes and Holes in Si FeFETs: Demonstration of Absolute Polarization Hysteresis Loop and Inversion Hole Density over 2x1013 cm-2
Kasidit Toprasertpong, The University of Tokyo, Japan

TF2 - Ferroelectric Memory and Capacitors

TF2.1 - 5G and AI Integrated High Performance Mobile SoC Process-Design Co-Development and Production with 7nm EUV FinFET Technology
Jie Deng, Qualcomm Technologies Inc., United States

TF2.2 - A Novel Dual Ferroelectric Layer Based MFMIS FeFET with Optimal Stack Tuning Toward Low Power and High-Speed NVM for Neuromorphic Applications
Tarek Ali, Fraunhofer IPMS Center Nanoelectronic Technologies, Germany

TF2.3 - Improved state stability of HfO2 ferroelectric tunnel junction by template-induced crystallization and remote scavenging for efficient in-memory reinforcement learning
Weng-Sheng Chen, Kioxia Corporation, Japan

TF2.4 - Nanosecond Laser Anneal (NLA) for Si-implanted HfO2 Ferroelectric Memories Integrated in Back-End Of Line (BEOL)
Laurent Grenouillet, CEA-LETI-MINATEC, France

TF2.5 - Advanced Processing of Absolute Polarization Hysteresis Loop and Inversion Hole Density over 2x1013 cm-2
Kasidit Toprasertpong, The University of Tokyo, Japan
TH1 - 3D Packaging

TH1.1 - Low Temperature SiOC Bonding and Stacking Technology for 12/16 Hi High Bandwidth Memory (HBM)
C.H. Tsai, Taiwan Semiconductor manufacturing Company, Taiwan

TH1.2 - 3D Heterogeneous Package Integration of Air/Magnetic Core Inductor: 89%-Efficiency Buck Converter with Backside Power Delivery Network
Xiao Sun, imec, Belgium

TH1.3 - Bumpless Build Cube (BBCube): High-Parallelism, High-Heat-Dissipation and Low-Power Stackable Memory Using Wafer-Level 3D Integration Process
NORIO CHUJO, Tokyo Institute of Technology, IIR, The WOW Alliance / Hitachi Ltd. Research & Development Group, Japan

TH1.4 - ExaNoDex: combined integration of chiplets on active interposer with bare dice in a multi-chip-module for heterogeneous and scalable high performance compute nodes
Pierre-Yves MARTINEZ, Univ. Grenoble Alpes, CEA-LIST, 38054 Grenoble, France, France

TH1.5 - Immersion in Memory Compute (ImMC) Technology
C.T. Wang, TSMC, Taiwan

TH1.6 - Low Temperature Cu/SiO2 Hybrid Bonding with Metal Passivation
Demin Liu, National Chiao Tung University, Taiwan

TH2 - Semiconducting Oxides for 3D Integration

TH2.1 - BEOL Compatible Dual-Gate Ultra Thin-Body W-Doped Indium-Oxide Transistor with Ion = 370uA/um, SS = 73mV/dec and Ion/Ioff ratio > 4x109
Wridddhi Chakraborty, University of Notre Dame, United States

TH2.2 - Surrounding Gate Vertical-Channel FET with Gate Length of 40 nm using BEOL Compatible High-Thermal-Tolerance In-Al-Zn Oxide Channel
Hirokazu Fujiwara, Kioxia Corporation, Japan

TH2.3 - Amorphous IGZO TFTs featuring Extremely-Scaled Channel Thickness and 38 nm Channel Length: Achieving Record High Gm,max of 125 µS/um at VDS of 1 V and ION of 350
SUBHRANU SAMANTA, National University of Singapore, Singapore

TH3 - Si Technologies for 3D Integration

TH3.1 - First Monolithic Integration of 3D Complementary FET (CFET) on 300mm Wafers Sujith Subramaninan, imec, Belgium

TH3.2 - 3D sequential low temperature top tier devices using dopant activation with excimer laser anneal and strained silicon as performance boosters. Anne Vandooren, imec, Belgium

TH3.3 - 28nm FDSOI CMOS technology (FEOL and BEOL) thermal stability for 3D Sequential Integration: yield and reliability analysis Camila Cavalcante, CEA-LETI, France

TH3.4 - First demonstration of low temperature (≤500°C) CMOS devices featuring functional RO and SRAM bitcells toward 3D VLSI integration Claire Fenouillet-Beranger, CEA-LETI-MINATEC, France

TH3.5 - Flexible and Transparent BEOL Monolithic 3DIC Technology for Human Skin Adaptable Internet of Things Chips Ming-Hsuan Kao, Taiwan Semiconductor Research Institute, Taiwan

TM1 - Memory - NAND/NOR/PCM

TM1.1 - An Extremely Scaled Hemicylindrical (HC) 3D NAND Device with Large Vt Memory Window (>10V) and Excellent 100k Endurance Pei-Ying Du, Macronix International Co., Ltd., Taiwan

TM1.2 - An approach to embedding traditional non-volatile memories into a deep sub-micron CMOS Chia-Sheng Lin, Taiwan Semiconductor manufacturing Company, Taiwan

TM1.3 - A Vertical 2T NOR (V2T) Architecture to Enable Scaling and Low-Power Solutions for NOR Flash Technology Hang-Ting Lue, Macronix International Co., Ltd., Taiwan

TM1.4 - Understanding of Tunable Selector Performance in Si-Ge As-Se OTS Devices by Extended Percolation Cluster Model Considering Operation Scheme and Material Design Shoichi Kabuyanagi, Kioxia Corp. assigned at imec, Japan

TM1.5 - A no-verification Multi-Level-Cell (MLC) operation in Cross-Point OTS-PCM Nanbo Gong, IBM T. J. Watson Research Center, United States

TM1.6 - Si Incorporation Into AsSeGe Chalcogenides for High Thermal Stability, High Endurance and Extremely Low Vth Drift 3D Stackable Cross-point Memory HUAI-YU CHENG, Macronix International Co., Ltd., Taiwan

TM2 - RRAM

TM2.1 - A SiOx RRAM-based hardware with spike frequency adaptation for power-saving continual learning in convolutional neural networks Irene Munoz-Martin, Politecnico di Milano, Italy

TM2.2 - A Voltage-Mode Sensing Scheme with Differential-Row Weight Mapping For Energy-Efficient RRAM-Based In-Memory Computing Weier Wan, Stanford University, United States

TM2.3 - Industrially Applicable Read Disturb Model and Performance on Mega-Bit Embedded RRAM CHANG-FENG YANG, Taiwan Semiconductor manufacturing Company, Taiwan

TM3.1 - Scalability of Quad Interface p-MTJ for 1X nm STT-MRAM with 10 ns Low Power Write Operation, 10 years Retention and Endurance > 10^11 Sadahiko Miura, Tohoku University, Japan

TM3.2 - Reliability Demonstration of Rework Qualified 22nm STT-MRAM for Embedded Memory Applications Chia-Yu Wang, Taiwan Semiconductor manufacturing Company, Taiwan

TM3.3 - Fast Switching of STT-MRAM to Realize High Speed Applications Tae Young Lee, Globalfoundries, Singapore

TM3.4 - A Reliable TDDB Lifetime Projection Model Verified Using 40Mb STT-MRAM Macro at Sub-ppm Failure Rate To Realize Unlimited Endurance for Cache Applications VINAYAK BHARAT NAIK, Globalfoundries, Singapore

TM3 - STT MRAM

TMFS.1 (Invited) - Recent Progresses in STT-MRAM and SOT-MRAM for Next Generation NORIO CHUJO, Tokyo Institute of Technology, IIR, The WOW Alliance / Hitachi Ltd. Research & Development Group, Japan

TMFS.2 (Invited) - Magnetic random access memories (MRAM) beyond information storage Ricardo SOUSA, Univ. Grenoble Alpes / CEA / CNRS, Spintec, France

TMFS.3 - CMOS Compatible Process Integration of SOT-MRAM with Heavy-Metal Bi-Layer Bottom Electrode and 10ns Field-Free SOT Switching with STT Assist. Noriyuki Sato, Intel Corporation, United States

TMFS.4 - Deterministic and field-free voltage-controlled MRAM for high performance and low power applications Yueh Chang Wu, imec, Belgium
TN1 - New Devices and Applications

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Speaker(s)</th>
<th>Institution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN1.1</td>
<td>Hair-Like Nanostructure Based Ion Detector by 16nm FinFET Technology</td>
<td>Chien-Ping Wang</td>
<td>National Tsing Hua University, Taiwan</td>
</tr>
<tr>
<td>TN1.2</td>
<td>Interpretable Neural Network to Model and to Reduce Self-Heating of FinFET Circuitry</td>
<td>Chia-Che Chung</td>
<td>National Taiwan University, Taiwan</td>
</tr>
<tr>
<td>TN1.3</td>
<td>Robust True Random Number Generator Using Stochastic Short-term Recovery of Charge Trapping FinFET for Advanced Hardware Security</td>
<td>Jianguo Yang</td>
<td>Institute of Microelectronics of the Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>TN1.4</td>
<td>A Bias and Correlation-Free True Random Number Generator Based on Quantized Oscillator Phase under Sub-Harmonic Injection Locking</td>
<td>Kai Ni</td>
<td>Rochester Institute of Technology, United States</td>
</tr>
<tr>
<td>TN1.5</td>
<td>1.5x Energy-Efficient and 1.4x Operation-Speed Via-Switch FPGA with Rapid and Low-Cost ASIC Migration by Via-Switch Copy</td>
<td>Xu BAI</td>
<td>NEC, Japan</td>
</tr>
<tr>
<td>TN1.6</td>
<td>Proposal and Experimental Demonstration of Reservoir Computing using $\text{Hf}_0.5\text{Zr}_0.5\text{O}_2$/Si FeFETs for Neuromorphic Applications</td>
<td>Eishin Nako</td>
<td>The University of Tokyo, Japan</td>
</tr>
<tr>
<td>TN1.7</td>
<td>High On-Current 2D nFET of 390 μA/μm at VDS = 1V using Monolayer CVD MoS2 without Intentional Doping</td>
<td>Ang-Sheng Chou</td>
<td>Taiwan Semiconductor manufacturing Company, Taiwan</td>
</tr>
<tr>
<td>TN1.8</td>
<td>Ultrahigh responsivity and tunable photogain BEOL compatible MoS2 phototransistor array for monolithic 3D image sensor with block-level sensing circuits</td>
<td>Chih-Chao Yang</td>
<td>Taiwan Semiconductor Research Institute, Taiwan</td>
</tr>
<tr>
<td>TN1.9</td>
<td>GaN PMIC Opportunities: Characterization of Analog and Digital Building Blocks in a 650V GaN-on-Si Platform</td>
<td>Wan Lin Jiang</td>
<td>University of Toronto, Canada</td>
</tr>
</tbody>
</table>

TN2 - Quantum Computing

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Speaker(s)</th>
<th>Institution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN2.1</td>
<td>Variability Evaluation of 28nm FD-SOI Technology at Cryogenic Temperatures down to 100mK for Quantum Computing</td>
<td>Bruna Paz</td>
<td>CEA-LETI-MINATEC, France</td>
</tr>
<tr>
<td>TN2.2</td>
<td>Toward Long-coherence-time Si Spin Qubit: The Origin of Low-Frequency Noise in Cryo-CMOS</td>
<td>Hiroshi Oka</td>
<td>National Institute of Advanced Industrial Science and Technology (AIST), Japan</td>
</tr>
</tbody>
</table>

In addition to the on-demand sessions described above, the VLSI Symposia on Technology and Circuits will also feature an exciting program of live events, as summarized in the next page. This includes 2 plenary sessions, 4 panel discussions, 3 workshops, and 25 executive sessions. The goal of Executive Sessions in the VLSI Symposia is to foster a discussion about the current state and future of the field. They will start with a 2 min summary of relevant papers that have been presented at VLSI 2020 on the topic. This will be followed by a 35 min discussion among the authors and session chairs on key challenges and opportunities. All conference participants are welcome to join these sessions and contribute with their insight and questions.
LIVE PROGRAM SCHEDULE

<table>
<thead>
<tr>
<th>JOINT SHIFT</th>
<th>PDT</th>
<th>CET</th>
<th>JST</th>
<th>Track 1</th>
<th>Track 2</th>
<th>Track 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday 6/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint Plenary (I)</td>
<td>06:00-07:00</td>
<td>15:00-16:00</td>
<td>22:00-23:00</td>
<td>Tech SC E-Pitch & Q/A</td>
<td>Joint SC E-Pitch & Q/A</td>
<td>Circ SC E-Pitch & Q/A</td>
</tr>
<tr>
<td>Joint Plenary (II)</td>
<td>08:00-08:50</td>
<td>17:00-17:50</td>
<td>00:00-00:50 next day</td>
<td>Joint Plenary (I)</td>
<td>WIE Panel</td>
<td>10 min break / hallway mingle</td>
</tr>
<tr>
<td>Joint Plenary (III)</td>
<td>09:00-09:50</td>
<td>18:00-18:50</td>
<td>01:00-01:50 next day</td>
<td>10 min break / hallway mingle</td>
<td>Memory (2)</td>
<td>Analog Building Blocks</td>
</tr>
<tr>
<td>Joint Plenary (IV)</td>
<td>10:00-10:50</td>
<td>19:00-19:50</td>
<td>02:00-02:50 next day</td>
<td>10 min break / hallway mingle</td>
<td>Technology and Circuits for ML Workshop</td>
<td>Adaptive Systems</td>
</tr>
<tr>
<td>Joint Plenary (V)</td>
<td>17:00-17:50</td>
<td>02:00-02:50 next day</td>
<td>Advanced CMOS (1)</td>
<td>Sensor Systems</td>
<td>10 min break / hallway mingle</td>
<td></td>
</tr>
<tr>
<td>Joint Plenary (VI)</td>
<td>18:00-18:50</td>
<td>03:00-03:50 next day</td>
<td>10 min break / hallway mingle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint Plenary (VII)</td>
<td>19:00-19:50</td>
<td>04:00-04:50 next day</td>
<td>10 min break / hallway mingle</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAE SHIFT</th>
<th>PDT</th>
<th>CET</th>
<th>JST</th>
<th>Track 1</th>
<th>Track 2</th>
<th>Track 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday 6/16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint Plenary (I)</td>
<td>06:00-07:00</td>
<td>15:00-16:00</td>
<td>22:00-23:00</td>
<td>Tech SC E-Pitch & Q/A</td>
<td>Joint SC E-Pitch & Q/A</td>
<td>Circ SC E-Pitch & Q/A</td>
</tr>
<tr>
<td>Joint Plenary (II)</td>
<td>08:00-08:50</td>
<td>17:00-17:50</td>
<td>00:00-00:50 next day</td>
<td>Joint Plenary (I)</td>
<td>WIE Panel</td>
<td>10 min break / hallway mingle</td>
</tr>
<tr>
<td>Joint Plenary (III)</td>
<td>09:00-09:50</td>
<td>18:00-18:50</td>
<td>01:00-01:50 next day</td>
<td>10 min break / hallway mingle</td>
<td>Memory (2)</td>
<td>Analog Building Blocks</td>
</tr>
<tr>
<td>Joint Plenary (IV)</td>
<td>10:00-10:50</td>
<td>19:00-19:50</td>
<td>02:00-02:50 next day</td>
<td>10 min break / hallway mingle</td>
<td>Technology and Circuits for ML Workshop</td>
<td>Adaptive Systems</td>
</tr>
<tr>
<td>Joint Plenary (V)</td>
<td>17:00-17:50</td>
<td>02:00-02:50 next day</td>
<td>Advanced CMOS (1)</td>
<td>Sensor Systems</td>
<td>10 min break / hallway mingle</td>
<td></td>
</tr>
<tr>
<td>Joint Plenary (VI)</td>
<td>18:00-18:50</td>
<td>03:00-03:50 next day</td>
<td>10 min break / hallway mingle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint Plenary (VII)</td>
<td>19:00-19:50</td>
<td>04:00-04:50 next day</td>
<td>10 min break / hallway mingle</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JFE SHIFT</th>
<th>PDT</th>
<th>CET</th>
<th>JST</th>
<th>Track 1</th>
<th>Track 2</th>
<th>Track 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday 6/17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint Plenary (I)</td>
<td>06:00-07:00</td>
<td>15:00-16:00</td>
<td>22:00-23:00</td>
<td>Tech SC E-Pitch & Q/A</td>
<td>Joint SC E-Pitch & Q/A</td>
<td>Circ SC E-Pitch & Q/A</td>
</tr>
<tr>
<td>Joint Plenary (II)</td>
<td>08:00-08:50</td>
<td>17:00-17:50</td>
<td>00:00-00:50 next day</td>
<td>Joint Plenary (I)</td>
<td>WIE Panel</td>
<td>10 min break / hallway mingle</td>
</tr>
<tr>
<td>Joint Plenary (III)</td>
<td>09:00-09:50</td>
<td>18:00-18:50</td>
<td>01:00-01:50 next day</td>
<td>10 min break / hallway mingle</td>
<td>Memory (2)</td>
<td>Analog Building Blocks</td>
</tr>
<tr>
<td>Joint Plenary (IV)</td>
<td>10:00-10:50</td>
<td>19:00-19:50</td>
<td>02:00-02:50 next day</td>
<td>10 min break / hallway mingle</td>
<td>Technology and Circuits for ML Workshop</td>
<td>Adaptive Systems</td>
</tr>
<tr>
<td>Joint Plenary (V)</td>
<td>17:00-17:50</td>
<td>02:00-02:50 next day</td>
<td>Advanced CMOS (1)</td>
<td>Sensor Systems</td>
<td>10 min break / hallway mingle</td>
<td></td>
</tr>
<tr>
<td>Joint Plenary (VI)</td>
<td>18:00-18:50</td>
<td>03:00-03:50 next day</td>
<td>10 min break / hallway mingle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint Plenary (VII)</td>
<td>19:00-19:50</td>
<td>04:00-04:50 next day</td>
<td>10 min break / hallway mingle</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thursday 6/18</th>
<th>Track 1</th>
<th>Track 2</th>
<th>Track 1</th>
<th>Track 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint Plenary (I)</td>
<td>06:00-07:00</td>
<td>15:00-16:00</td>
<td>22:00-23:00</td>
<td>Tech SC E-Pitch & Q/A</td>
</tr>
<tr>
<td>Joint Plenary (II)</td>
<td>08:00-08:50</td>
<td>17:00-17:50</td>
<td>00:00-00:50 next day</td>
<td>Joint SC E-Pitch & Q/A</td>
</tr>
<tr>
<td>Joint Plenary (III)</td>
<td>09:00-09:50</td>
<td>18:00-18:50</td>
<td>01:00-01:50 next day</td>
<td>Circ SC E-Pitch & Q/A</td>
</tr>
<tr>
<td>Joint Plenary (IV)</td>
<td>10:00-10:50</td>
<td>19:00-19:50</td>
<td>02:00-02:50 next day</td>
<td>10 min break / hallway mingle</td>
</tr>
<tr>
<td>Joint Plenary (V)</td>
<td>17:00-17:50</td>
<td>02:00-02:50 next day</td>
<td>Advanced CMOS (1)</td>
<td>Sensor Systems</td>
</tr>
<tr>
<td>Joint Plenary (VI)</td>
<td>18:00-18:50</td>
<td>03:00-03:50 next day</td>
<td>10 min break / hallway mingle</td>
<td></td>
</tr>
<tr>
<td>Joint Plenary (VII)</td>
<td>19:00-19:50</td>
<td>04:00-04:50 next day</td>
<td>10 min break / hallway mingle</td>
<td></td>
</tr>
</tbody>
</table>

PDT Pacific Daylight Time (e.g., Los Angeles)
CET Central European Time (e.g., Netherlands)
JST Japan Standard Time (e.g., Japan, South Korea)